Lab02: The PingPong Sequence

1 Task

This lab introduces a sequence termed the PingPong sequence that you are tasked with computing. Here are the specific rules governing this sequence:

- For a given sequence $f(n)=\left\{\left(v_{n}, d_{n}\right) \mid v_{n} \in \mathbb{Z}, d_{n} \in\{+,-\}, n \geq 1\right\}$
- $f(1)=(3,+)$

○ $v_{n+1}=2 v_{n} d_{n} 2$, for example, if $d_{n}=+$, then $v_{n+1}=2 v_{n}+2$

- After computing v_{n+1}, if v_{n+1} is divisible by 8 or if the last digit of its decimal representation is ' 8 ', then d_{n+1} changes to another, else $d_{n+1}=d_{n}$
- The following code may help you to understand the rules

```
def calculate_next_term(v_n: int, d_n: bool):
    if d_n:
        v_next = 2 * v_n + 2
    else:
        v_next = 2 * v_n - 2
    if v_next % 8 == 0 or last_digit(v_next) == 8:
            d_next = not d_n
    else:
            d_next = d_n
    return v_next, d_next
```

You are required to devise a program that calculates $f(N)$. The value of N will be stored in x3102.

Constraints:

- When determining a term of $f(n)$, such as $f(N)$, all your arithmetic operations should be executed modulo $4096=2^{12}$. As a result, no term of $f(n)$ will surpass 4096.

Your Job: Compute $f(N)$ and save the result in x3103.

Examples:

\boldsymbol{N}	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$
$f(N)$	3	8	14	26	50	98	198	394	786
direction*	\uparrow (init)	\downarrow	\downarrow	\downarrow	\downarrow	\uparrow	\downarrow	\downarrow	\downarrow

* The $\operatorname{direction}(N)$ in the table is after computing $f(N)$

1.1 Score

Your score will be split between correctness (50\%) and the report (50\%).

1.2 Submission

For this lab, you are required to use assembly code. Please adhere to the following guidelines:

1. Your program should start with .ORIG x3000
2. Ensure your program ends with .END
3. Your last instruction must be TRAP x25 (HALT)
4. Use capitalized keywords and labels (e.g., "ADD" rather than "add").
5. Maintain spaces after commas for clarity.
6. Prefix decimal constants with \# and hexadecimal constants with a lowercase x.
7. Include comments in your code where necessary for clarification.

1.3 Reports

Your report should be structured into the following sections:

1. Purpose: Clarify the objective of this experiment and your anticipated outcomes.
2. Principles: Discuss how specific operations like modulus are dealt with.
3. Procedure: Narrate any bugs or challenges encountered and how they were resolved.
4. Results: Present the outcomes of your tests.
5. Improvements: Respond to the question: How might you optimize the efficiency of loop structures in your program?

1.4 Something Interesting

While not required for the main report, consider pondering over these challenges:

1. By studying certain cases, can you discern any recurring patterns or periodicity in the PingPong sequence?
2. If a pattern is evident, can it be universally applied? If it's not universally applicable, provide an illustrative counterexample.

Engaging with these questions may offer a deeper insight into the sequence's characteristics.

